AJNN

The Academic Journal of Neurology and Neurosurgery deals with Neurology and Neurosurgery accepts articles on these topics. Academic Journal of Neurology and Neurosurgery publishes original research articles, review articles, case reports, editorial commentaries, letters to the editor, educational articles, and conference/meeting announcements.

EndNote Style
Index
Original Article
Investigation of cognitive decline in patients with COVID-19 syndrome within 12 weeks after infection
Aims: This study aims to investigate the effect of cognition in patients with COVID-19 within 12 weeks after infection.
Methods: A prospective study included 30 patients with COVID-19 within three months after COVID-19 and 30 healthy controls.The age, gender and educational status of the participants were recorded.These patients underwent montreal cognitive assessment (MOCA) test. Statistical comparisons were performed using Mann witney U test and Pearson Chi-Square test.
Results: There was a statistically significant difference in age between the patients with Covid-19 and the control group (p=0.02). No statistically significant difference was found between the two groups in terms of gender (p=0,06). The total MOCA test score of the COVID-19 patient group was found to be statistically significantly lower than the control group (p=0,00). The education level of the patients with COVID-19 was found to be statistically significantly lower than the control group (p=0.05)
Conclusion: The results suggest that cognitive decline is a prolonged effect within 12 weeks after COVID-19.


1. Naming the coronavirus disease (COVID-19) and the virus that causes it. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Accessed May 1, 2020.
2. Miskowiak KW, Johnsen S, Sattler SM, et al. Cognitive impairments four months after COVID-19 hospital discharge: pattern, severity and association with illness variables. Eur Neuropsychopharmacol. 2021;46: 39-48. doi:10.1016/j.euroneuro.2021.03.019
3. Fotuhi M, Hachinski V, Whitehouse PJ. Changing perspectives regarding late-life dementia. Nat Rev Neurol. 2009;5(12):649-658. doi: 10.1038/nrneurol.2009.175
4. Fotuhi M, Do D, Jack C. Modifiable factors that alter the size of the hippocampus with ageing.Nat Rev Neurol. 2012;8(4):189-202. doi:10. 1038/nrneurol.2012.27
5. Liu X, Chen X, Zhou X, et al. Validity of the MemTrax memory test compared to the montreal cognitive assessment in the detection of mild cognitive impairment and dementia due to Alzheimer’s disease in a Chinese cohort. J Alzheimers Dis. 2021;80(3):1257-1267. doi:10.3233/JAD-200936
6. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259-264. doi:10. 1038/s41586-021-03553-9
7. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601-615. doi:10.1038/s41591-021-01283-z
8. Benghanem S, Mazeraud A, Azabou E, et al. Brainstem dysfunction in critically ill patients. Crit Care. 2020;24(1):5. doi:10.1186/s13054-019-2718-9
9. Walker EP, and Tadi P. Neuroanatomy, Nucleus Raphe. In StatPearls, StatPearls Publishing, Treasure Island, FL. 2020.
10. Itoi K, Sugimoto N. The brainstem noradrenergic systems in stress, anxiety and depression.J Neuroendocrinol. 2010;22(5):355-361. doi:10. 1111/j.1365-2826.2010.01988.x
11. Loughlin SE, Fallon JH. Substantia nigra and ventral tegmental area projections to cortex: topography and collateralization. Neuroscience. 1984;11(2):425-435. doi:10.1016/0306-4522(84)90034-4
12. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26(4):317-330. doi:10.1016/j.jchemneu.2003. 10.003
13. Venkatraman A, Edlow BL, Immordino-Yang MH. The brainstem in emotion: a review.Front Neuroanat. 2017;11:15. doi:10.3389/fnana.2017. 00015
14. Yong SJ, Tong T, Chew J, Lim WL. Antidepressive mechanisms of probiotics and their therapeutic potential.Front Neurosci. 2020;13:1361. doi:10.3389/fnins.2019.01361
15. Desai AD, Lavelle M, Boursiquot BC, et al. Long-term complications of COVID-19. Am J Physiol Cell Physiol. 2022;322(1):C1-C11. doi:10.1152/ajpcell.00375.2021
16. Montani D, Savale L, Noel N, et al. Post-acute COVID-19 syndrome. Eur Respir Rev. 2022;31(163):210185. doi:10.1183/16000617.0185-2021
17. Sneller MC, Liang CJ, Marques AR, et al. A longitudinal study of COVID-19 sequelae and immunity: baseline findings. Ann Intern Med. 2022;175(7):969-979. doi:10.7326/M21-4905
18. Del Rio C, Collins LF, Malani P. Long-term health consequences of COVID-19. JAMA. 2020;324(17):1723-1724. doi:10.1001/jama.2020.19719
19. Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26(7):1017-1032. doi:10. 1038/s41591-020-0968-3
20. Mehandru S, Merad M.Pathological sequelae of long-haul COVID. Nat Immunol. 2022;23(2):194-202. doi:10.1038/s41590-021-01104-y
21. Gavriatopoulou M, Korompoki E, Fotiou D, et al. Organ-specific manifestations of COVID-19 infection. Clin Exp Med. 2020;20(4):493-506. doi:10.1007/s10238-020-00648-x
22. National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19. NICE guideline (18 December 2020).
23. World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus (6 October 2021).
24. WH. A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. Published October 6, 2021. Accessed October 15, 2021. https://www. who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition- 2021.1.
25. Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. bioRxiv. EClinicalMedicine. 2021;38:101019. doi:10.1016/j.eclinm.2021. 101019
26. Ceban F, Ling S, Lui LMW, et al. Fatigue and cognitive impairment in post-COVID-19 syndrome: a systematic review and meta-analysis. Brain Behav Immun. 2022;101:93-135. doi:10.1016/j.bbi.2021.12.020
27. Alemanno F, Houdayer E, Parma A, et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: a COVID-rehabilitation unit experience. PLoS One. 2021;16(2):e0246590. doi:10. 1371/journal.pone.0246590
28. Pfoh ER, Chan KS, Dinglas VD, et al. Cognitive screening among acute respiratory failure survivors: a cross-sectional evaluation of the mini-mental state examination.Crit Care. 2015;19(1):220. doi:10.1186/s13054-015-0934-5
29. Crunfi F, Corasolla Carregari V, Veras FP, et al. SARS-CoV-2 infects brain astrocytes of covid-19 patients and impairs neuronal viability. medRxiv. 2022;119(35):e2200960119. doi:10.1101/2020.10.09.20207464
30. Jaywant A, Vanderlind WM, Alexopoulos GS, Fridman CB, Perlis RH, Gunning FM. Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19.Neuropsychopharmacology. 2021;46(13):2235-2240. doi:10.1038/s41386-021-00978-8
31. Zhao S, Shibata K, Hellyer PJ, et al. Rapid vigilance and episodic memory decrements in COVID-19 survivors. Brain Commun. 2022; 4(1):fcab295. doi:10.1093/braincomms/fcab295
32. Hartung TJ, Neumann C, Bahmer T, et al. Fatigue and cognitive impairment after COVID-19: a prospective multicentre study. Eclinical Medicine. 2022;53:101651. doi:10.1016/j.eclinm.2022.101651
Volume 2, Issue 2, 2025
Page : 20-24
_Footer